Premium
A novel slip‐power recovery system using a PWM boost rectifier
Author(s) -
Hoshi Nobukazu,
Oguchi Kuniomi
Publication year - 2002
Publication title -
electrical engineering in japan
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.136
H-Index - 28
eISSN - 1520-6416
pISSN - 0424-7760
DOI - 10.1002/eej.10012
Subject(s) - chopper , control theory (sociology) , ripple , pwm rectifier , torque ripple , wound rotor motor , peak inverse voltage , pulse width modulation , synchronous motor , torque , voltage drop , voltage , engineering , electrical engineering , computer science , voltage source , induction motor , physics , direct torque control , voltage optimisation , control (management) , artificial intelligence , thermodynamics
Abstract A novel compact slip‐power recovery system having sinusoidal rotor currents is proposed. In this system, a PWM boost rectifier is used as a substitute for a diode rectifier and a boost chopper in a conventional compact slip‐power recovery system. The conventional compact system has the disadvantage that it has a rectangular rotor current, and a motor torque with large ripple, because a diode rectifier remains in the system. Also, the rotor current cannot reach the current reference value near the synchronous speed, because the voltage drop caused by the resistance of the semiconductor devices and so on cannot be neglected when the rotor voltage becomes smaller near the synchronous speed. The use of the system proposed in this paper has solved these problems. The effectiveness of the proposed system was verified through computer simulations and experiments. As a result, the proposed system brings the sinusoidal rotor current, the small torque ripple, and wide controllable range near the synchronous speed. © 2002 Scripta Technica, Electr Eng Jpn, 139(2): 52–60, 2002; DOI 10.1002/eej.10012