
The state, transport, and fate of aboveground terrestrial arthropod eDNA
Author(s) -
Valentin Rafael E.,
Kyle Kathleen E.,
Allen Michael C.,
Welbourne Dustin J.,
Lockwood Julie L.
Publication year - 2021
Publication title -
environmental dna
Language(s) - English
Resource type - Journals
ISSN - 2637-4943
DOI - 10.1002/edn3.229
Subject(s) - terrestrial plant , arthropod , terrestrial ecosystem , environmental dna , ecology , biology , vegetation (pathology) , aquatic ecosystem , biodiversity , environmental science , ecosystem , medicine , pathology
Environmental DNA (eDNA) analyses have become invaluable for detecting and monitoring aquatic and terrestrial species and assessing site biodiversity within aquatic environments or soil. Recent studies have extended these techniques by using eDNA to identify the presence of aboveground terrestrial arthropods directly from vegetative surfaces. However, while the dynamics of eDNA state, transport, and fate (its “ecology”) have been explored within aquatic environments and soil, they have yet to be explored within aboveground terrestrial systems. Here, we explore the ecology of terrestrial eDNA deposited by fluid‐feeding arthropods on leaf surfaces. We carried out a series of experiments to evaluate the optimal filter pore size for intracellular eDNA collection, how eDNA is affected by rain events, and its degradation rate under different solar radiation conditions. We found that the captured concentration of intracellular eDNA was not significantly affected by an increase in filter pore size, suggesting a wide range of viable pore size options exist for targeting intracellular eDNA. We also found extracellular eDNA from fluid excrement degrades more rapidly than intracellular when exposed to solar radiation, indicating the latter is a more viable target for collection. Finally, we identified that rainfall or mist will remove most terrestrial eDNA present on vegetation surfaces. We provide researchers and environmental managers key insights into successfully designing and carrying out aboveground terrestrial arthropod eDNA surveys that maximize detection probability.