z-logo
Premium
Variation in synchrony of production among species, sites, and intertidal zones in coastal marshes
Author(s) -
Liu Wenwen,
Pennings Steven C.
Publication year - 2021
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1002/ecy.3278
Subject(s) - abiotic component , marsh , salt marsh , brackish marsh , ecology , habitat , intertidal zone , productivity , ecosystem , salinity , biology , biotic component , brackish water , environmental science , wetland , economics , macroeconomics
Abstract Spatially synchronous population dynamics are important to ecosystem functioning and have several potential causes. By looking at synchrony in plant productivity over 18 yr across two elevations in three types of coastal marsh habitat dominated by different clonal plant species in Georgia, USA, we were able to explore the importance of plant species and different habitat conditions to synchrony. Synchrony was highest when comparing within a plant species and within a marsh zone, and decreased across species, with increasing distance, and with increasing elevational differences. Abiotic conditions that were measured at individual sites (water column temperature and salinity) also showed high synchrony among sites, and in one case (salinity) decreased with increasing distance among sites. The Moran effect (synchronous abiotic conditions among sites) is the most plausible explanation for our findings. Decreased synchrony between creekbank and mid‐marsh zones, and among habitat types (tidal fresh, brackish, and salt marsh) was likely due in part to different exposure to abiotic conditions and in part to variation in sensitivity of dominant plant species to these abiotic conditions. We found no evidence for asynchrony among species, sites or zones, indicating that one habitat type or zone will not compensate for poor production in another during years with low productivity; however, tidal fresh, brackish. and salt marsh sites were also not highly synchronous with each other, which will moderate productivity variation among years at the landscape level due to the portfolio effect. We identified the creekbank zone as more sensitive than the mid‐marsh to abiotic variation and therefore as a priority for monitoring and management.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here