z-logo
Premium
Multitrophic diversity sustains ecological complexity by dampening top‐down control of a shallow marine benthic food web
Author(s) -
O’Gorman Eoin J.
Publication year - 2021
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1002/ecy.3274
Subject(s) - food web , trophic level , ecology , predation , biology , benthic zone , intraguild predation , apex predator , biodiversity , ecosystem , trophic cascade , species richness , food chain , predator
Biodiversity is typically considered as a one‐dimensional metric (e.g., species richness), yet the consequences of species loss may be different depending on where extinctions occur in the food web. Here, I used a manipulative field experiment in a temperate subtidal marine system to explore the implications of diversity loss at multiple trophic levels for ecosystem functioning and food web structure. The four manipulated predators included the small painted goby and common prawn, which are also fed on by the larger black goby and shore crab. Antagonistic interactions between the manipulated predators (e.g., intraguild predation, intimidation, interference competition) limited their negative effects on the rest of the food web. Top‐down control was so suppressed at the highest level of multitrophic diversity that the resulting food webs were as complex and productive as those containing no manipulated predators. Negative interactions between the predators weakened as multitrophic diversity decreased, however, resulting in stronger consumption of lower trophic levels and a simpler food web with lower rates of two key ecosystem processes: primary production and decomposition. These results show how indirect interactions between predators on multiple trophic levels help to promote the complexity and functioning of natural systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom