Premium
Trait‐based variation in host contribution to pathogen transmission across species and resource supplies
Author(s) -
Welsh Miranda E.,
Cronin James Patrick,
Mitchell Charles E.
Publication year - 2020
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1002/ecy.3164
Subject(s) - host (biology) , biology , ecology , trait , transmission (telecommunications) , resource (disambiguation) , pathogen , community , ecosystem , computer network , computer science , electrical engineering , immunology , programming language , engineering
Two key knowledge gaps currently limit the development of more predictive and general models of pathogen transmission: (1) the physiological basis of heterogeneity in host contribution to pathogen transmission (reservoir potential) remains poorly understood and (2) a general means of integrating the ecological dynamics of host communities has yet to emerge. If the traits responsible for differences in reservoir potential also modulate host community dynamics, these traits could be used to predict pathogen transmission as host communities change. In two greenhouse experiments, across 23 host species and two levels of resource supply, the reservoir potential of plant hosts increased significantly along the Leaf Economics Spectrum, a global axis of plant physiological trait covariation that features prominently in models of plant community ecology. This indicates that the traits of the Leaf Economics Spectrum underlie broad differences in reservoir potential across host species and resource supplies. Therefore, host traits could be used to integrate epidemiological models of pathogen transmission with ecological models of host community change.