z-logo
Premium
Habitat‐dependent movement rate can determine the efficacy of marine protected areas
Author(s) -
Jiao Jing,
Pilyugin Sergei S.,
RiotteLambert Louise,
Osenberg Craig W.
Publication year - 2018
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1002/ecy.2477
Subject(s) - habitat , marine protected area , differential (mechanical device) , abundance (ecology) , movement (music) , ecology , fishing , differential effects , empirical research , environmental science , biology , statistics , mathematics , physics , acoustics , endocrinology , thermodynamics
Theoretical studies of marine protected areas ( MPA s) suggest that more mobile species should exhibit reduced local effects (defined as the ratio of the density inside vs. outside of the MPA ). However, empirical studies have not supported the expected negative relationship between the local effect and mobility. We propose that differential, habitat‐dependent movement (i.e., a higher movement rate in the fishing grounds than in the MPA ) might explain the disparity between theoretical expectations and empirical results. We evaluate this hypothesis by building two‐patch box and stepping‐stone models and show that increasing disparity in the habitat‐specific movement rates shifts the relationship between the local effect and mobility from negative (the previous theoretical results) to neutral or positive (the empirical pattern). This shift from negative to positive occurs when differential movement offsets recruitment and mortality differences between the two habitats. Thus, local effects of MPA s might be caused by behavioral responses via differential movement rather than by, or in addition to, reductions in mortality. In addition, the benefits of MPA s, in terms of regional abundance and fishing yields, can be altered by the magnitude of differential movement. Thus, our study points to a need for empirical investigations that disentangle the interactions among mobility, differential movement, and protection.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here