z-logo
Premium
Inferring species interactions from co‐occurrence data with Markov networks
Author(s) -
Harris David J.
Publication year - 2016
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1002/ecy.1605
Subject(s) - pairwise comparison , markov chain , ecology , computer science , markov model , ecological network , null model , variable order markov model , econometrics , mathematics , machine learning , biology , artificial intelligence , ecosystem
Inferring species interactions from co‐occurrence data is one of the most controversial tasks in community ecology. One difficulty is that a single pairwise interaction can ripple through an ecological network and produce surprising indirect consequences. For example, the negative correlation between two competing species can be reversed in the presence of a third species that outcompetes both of them. Here, I apply models from statistical physics, called Markov networks or Markov random fields, that can predict the direct and indirect consequences of any possible species interaction matrix. Interactions in these models can be estimated from observed co‐occurrence rates via maximum likelihood, controlling for indirect effects. Using simulated landscapes with known interactions, I evaluated Markov networks and six existing approaches. Markov networks consistently outperformed the other methods, correctly isolating direct interactions between species pairs even when indirect interactions or abiotic factors largely overpowered them. Two computationally efficient approximations, which controlled for indirect effects with partial correlations or generalized linear models, also performed well. Null models showed no evidence of being able to control for indirect effects, and reliably yielded incorrect inferences when such effects were present.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom