z-logo
Premium
Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria
Author(s) -
Carvalho Teotonio Soares,
Jesus Ederson da Conceição,
Barlow Jos,
Gardner Toby A.,
Soares Isaac Carvalho,
Tiedje James M.,
Moreira Fatima Maria de Souza
Publication year - 2016
Publication title -
ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.144
H-Index - 294
eISSN - 1939-9170
pISSN - 0012-9658
DOI - 10.1002/ecy.1513
Subject(s) - beta diversity , ecology , species richness , alpha diversity , biodiversity , tropics , biology , soil fertility , land use , agroforestry , environmental science , geography , soil water
Anthropogenic pressures on tropical forests are rapidly intensifying, but our understanding of their implications for biological diversity is still very limited, especially with regard to soil biota, and in particular soil bacterial communities. Here we evaluated bacterial community composition and diversity across a gradient of land use intensity in the eastern Amazon from undisturbed primary forest, through primary forests varyingly disturbed by fire, regenerating secondary forest, pasture, and mechanized agriculture. Soil bacteria were assessed by paired‐end Illumina sequencing of 16S rRNA gene fragments (V4 region). The resulting sequences were clustered into operational taxonomic units ( OTU ) at a 97% similarity threshold. Land use intensification increased the observed bacterial diversity (both OTU richness and community heterogeneity across space) and this effect was strongly associated with changes in soil pH . Moreover, land use intensification and subsequent changes in soil fertility, especially pH , altered the bacterial community composition, with pastures and areas of mechanized agriculture displaying the most contrasting communities in relation to undisturbed primary forest. Together, these results indicate that tropical forest conversion impacts soil bacteria not through loss of diversity, as previously thought, but mainly by imposing marked shifts on bacterial community composition, with unknown yet potentially important implications for ecological functions and services performed by these communities.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here