z-logo
open-access-imgOpen Access
Exploring the effects of spatial autocorrelation when identifying key drivers of wildlife crop‐raiding
Author(s) -
Songhurst Anna,
Coulson Tim
Publication year - 2014
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.837
Subject(s) - spatial analysis , wildlife , spatial ecology , geography , field (mathematics) , ecology , temporal scales , human–wildlife conflict , environmental resource management , computer science , environmental science , remote sensing , mathematics , biology , pure mathematics
Few universal trends in spatial patterns of wildlife crop‐raiding have been found. Variations in wildlife ecology and movements, and human spatial use have been identified as causes of this apparent unpredictability. However, varying spatial patterns of spatial autocorrelation (SA) in human–wildlife conflict (HWC) data could also contribute. We explicitly explore the effects of SA on wildlife crop‐raiding data in order to facilitate the design of future HWC studies. We conducted a comparative survey of raided and nonraided fields to determine key drivers of crop‐raiding. Data were subsampled at different spatial scales to select independent raiding data points. The model derived from all data was fitted to subsample data sets. Model parameters from these models were compared to determine the effect of SA. Most methods used to account for SA in data attempt to correct for the change in P ‐values; yet, by subsampling data at broader spatial scales, we identified changes in regression estimates. We consequently advocate reporting both model parameters across a range of spatial scales to help biological interpretation. Patterns of SA vary spatially in our crop‐raiding data. Spatial distribution of fields should therefore be considered when choosing the spatial scale for analyses of HWC studies. Robust key drivers of elephant crop‐raiding included raiding history of a field and distance of field to a main elephant pathway. Understanding spatial patterns and determining reliable socio‐ecological drivers of wildlife crop‐raiding is paramount for designing mitigation and land‐use planning strategies to reduce HWC. Spatial patterns of HWC are complex, determined by multiple factors acting at more than one scale; therefore, studies need to be designed with an understanding of the effects of SA. Our methods are accessible to a variety of practitioners to assess the effects of SA, thereby improving the reliability of conservation management actions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here