z-logo
open-access-imgOpen Access
Temporal stability and maintenance mechanisms of alpine meadow communities under clipping and fertilization
Author(s) -
Wang Ting,
Guo Chenglong,
Sang Silin,
Liu Yiting,
Liu Gang,
Qi Desheng,
Zhu Zhihong
Publication year - 2021
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.8128
Subject(s) - clipping (morphology) , facilitation , human fertilization , biology , ecology , alternative stable state , abundance (ecology) , agronomy , ecosystem , neuroscience , philosophy , linguistics
Negative effects of long‐term overgrazing have been seriously, grasslands temporal stability is an important ecological concern we need to research. Here, we performed a 12‐year‐long (2007–2018) two‐factor controlled experiment on Kobresia humilis meadow on the Tibetan Plateau. The manipulations included three clipping levels (no clipping, NC; moderate clipping, MC; heavy clipping, HC) and two fertilization levels (no fertilization, NF; fertilization, F). Our results revealed that the two clipping manipulations significantly increased the temporal stability of alpine meadow communities, whose significant increase was more pronounced under the MC than HC treatment. Species asynchrony had a significant positive correlation with species abundance along with compound community gradient. Moreover, asynchrony effects, portfolio effects, and facilitation interactions were all present in the communities under the six types of experimental treatment combinations. Additionally, a selection effect was detected in the compound communities, demonstrating characteristics that are common to different mechanisms. There were no significant differences in the effects of these mechanisms on community temporal stability between the NC–NF and MC–NF interactive communities. The portfolio effects predominated when clipping intensity was moderate under both fertilization and nonfertilization conditions. By contrast, in the compound communities, the selection effect predominated. In summary, we conclude that in meadow communities that undergo clipping and fertilization disturbances, facilitation interactions and weak interactions make a greater contribution toward maintaining their temporal stability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom