
Plastic adjustments of biparental care behavior across embryonic development under elevated temperature in a marine ectotherm
Author(s) -
Spatafora Davide,
Massamba N'Siala Gloria,
Quattrocchi Federico,
Milazzo Marco,
Calosi Piero
Publication year - 2021
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.7902
Subject(s) - paternal care , ectotherm , biology , offspring , phenotypic plasticity , parental investment , reproductive success , hatching , brood , developmental plasticity , ecology , effects of global warming on oceans , zoology , climate change , global warming , plasticity , demography , pregnancy , genetics , population , physics , sociology , thermodynamics
Phenotypic plasticity in parental care investment allows organisms to promptly respond to rapid environmental changes by potentially benefiting offspring survival and thus parental fitness. To date, a knowledge gap exists on whether plasticity in parental care behaviors can mediate responses to climate change in marine ectotherms. Here, we assessed the plasticity of parental care investment under elevated temperatures in a gonochoric marine annelid with biparental care, Ophryotrocha labronica , and investigated its role in maintaining the reproductive success of this species in a warming ocean. We measured the time individuals spent carrying out parental care activities across three phases of embryonic development, as well as the hatching success of the offspring as a proxy for reproductive success, at control (24℃) and elevated (27℃) temperature conditions. Under elevated temperature, we observed: (a) a significant decrease in total parental care activity, underpinned by a decreased in male and simultaneous parental care activity, in the late stage of embryonic development; and (b) a reduction in hatching success that was however not significantly related to changes in parental care activity levels. These findings, along with the observed unaltered somatic growth of parents and decreased brood size, suggest that potential cost‐benefit trade‐offs between offspring survival (i.e., immediate fitness) and parents' somatic condition (i.e., longer‐term fitness potential) may occur under ongoing ocean warming. Finally, our results suggest that plasticity in parental care behavior is a mechanism able to partially mitigate the negative effects of temperature‐dependent impacts.