z-logo
open-access-imgOpen Access
Modeling herbivore functional responses causing boom‐bust dynamics following predator removal
Author(s) -
HallerBull Vanessa,
Bode Michael
Publication year - 2021
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.7185
Subject(s) - boom , bust , herbivore , ecology , population , ecosystem , invasive species , threatened species , biodiversity , predator , theoretical ecology , biology , habitat , environmental science , predation , demography , environmental engineering , sociology
Native biodiversity is threatened by invasive species in many terrestrial and marine systems, and conservation managers have demonstrated successes by responding with eradication or control programs. Although invasive species are often the direct cause of threat to native species, ecosystems can react in unexpected ways to their removal or reduction. Here, we use theoretical models to predict boom‐bust dynamics, where the removal of predatory or competitive pressure from a native herbivore results in oscillatory population dynamics (boom‐bust), which can endanger the native species’ population in the short term. We simulate control activities, applied to multiple theoretical three‐species Lotka‐Volterra ecosystem models consisting of vegetation, a native herbivore, and an invasive predator. Based on these communities, we then develop a predictive tool that—based on relative parameter values—predicts whether control efforts directed at the invasive predator will lead to herbivore release followed by a crash. Further, by investigating the different functional responses, we show that model structure, as well as model parameters, are important determinants of conservation outcomes. Finally, control strategies that can mitigate these negative consequences are identified. Managers working in similar data‐poor ecosystems can use the predictive tool to assess the probability that their system will exhibit boom‐bust dynamics, without knowing exact community parameter values.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here