z-logo
open-access-imgOpen Access
Experimental demonstration of accelerated extinction in source‐sink metapopulations
Author(s) -
Drake John M.,
Griffen Blaine D.
Publication year - 2013
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.713
Subject(s) - metapopulation , sink (geography) , environmental science , ecology , population , extinction (optical mineralogy) , ecosystem , habitat , habitat fragmentation , biology , geography , biological dispersal , paleontology , demography , cartography , sociology
Abstract Population extinction is a fundamental ecological process which may be aggravated by the exchange of organisms between productive (source) and unproductive (sink) habitat patches. The extent to which such source‐sink exchange affects extinction rates is unknown. We conducted an experiment in which metapopulation effects could be distinguished from source‐sink effects in laboratory populations of Daphnia magna . Time‐to‐extinction in this experiment was maximized at intermediate levels of habitat fragmentation, which is consistent with a minority of theoretical models. These results provided a baseline for comparison with experimental treatments designed to detect effects of concentrating resources in source patches. These treatments showed that source‐sink configurations increased population variability (the coefficient of variation in abundance) and extinction hazard compared with homogeneous environments. These results suggest that where environments are spatially heterogeneous, accurate assessments of extinction risk will require understanding the exchange of organisms among population sources and sinks. Such heterogeneity may be the norm rather than the exception because of both the intrinsic heterogeneity naturally exhibited by ecosystems and increasing habitat fragmentation by human activity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here