z-logo
open-access-imgOpen Access
New technologies in the mix: Assessing N‐mixture models for abundance estimation using automated detection data from drone surveys
Author(s) -
Corcoran Evangeline,
Denman Simon,
Hamilton Grant
Publication year - 2020
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.6522
Subject(s) - abundance (ecology) , estimator , spurious relationship , statistical power , computer science , abundance estimation , statistics , aerial survey , estimation , wildlife , remote sensing , mathematics , ecology , biology , geography , engineering , systems engineering
Reliable estimates of abundance are critical in effectively managing threatened species, but the feasibility of integrating data from wildlife surveys completed using advanced technologies such as remotely piloted aircraft systems (RPAS) and machine learning into abundance estimation methods such as N‐mixture modeling is largely unknown due to the unique sources of detection errors associated with these technologies. We evaluated two modeling approaches for estimating the abundance of koalas detected automatically in RPAS imagery: (a) a generalized N‐mixture model and (b) a modified Horvitz–Thompson (H‐T) estimator method combining generalized linear models and generalized additive models for overall probability of detection, false detection, and duplicate detection. The final estimates from each model were compared to the true number of koalas present as determined by telemetry‐assisted ground surveys. The modified H‐T estimator approach performed best, with the true count of koalas captured within the 95% confidence intervals around the abundance estimates in all 4 surveys in the testing dataset ( n  = 138 detected objects), a particularly strong result given the difficulty in attaining accuracy found with previous methods. The results suggested that N‐mixture models in their current form may not be the most appropriate approach to estimating the abundance of wildlife detected in RPAS surveys with automated detection, and accurate estimates could be made with approaches that account for spurious detections.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here