z-logo
open-access-imgOpen Access
Phenotypic responses to temperature in the ciliate Tetrahymena thermophila
Author(s) -
Weber de Melo Vanessa,
Lowe Robert,
Hurd Paul J.,
Petchey Owen L.
Publication year - 2020
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.6486
Subject(s) - tetrahymena , ciliate , biology , phenotypic plasticity , adaptation (eye) , experimental evolution , phenotype , evolutionary biology , population , ecology , genetics , gene , demography , neuroscience , sociology
Understanding the effects of temperature on ecological and evolutionary processes is crucial for generating future climate adaptation scenarios. Using experimental evolution, we evolved the model ciliate Tetrahymena thermophila in an initially novel high temperature environment for more than 35 generations, closely monitoring population dynamics and morphological changes. We observed initially long lag phases in the high temperature environment that over about 26 generations reduced to no lag phase, a strong reduction in cell size and modifications in cell shape at high temperature. When exposing the adapted populations to their original temperature, most phenotypic traits returned to the observed levels in the ancestral populations, indicating phenotypic plasticity is an important component of this species thermal stress response. However, persistent changes in cell size were detected, indicating possible costs related to the adaptation process. Exploring the molecular basis of thermal adaptation will help clarify the mechanisms driving these phenotypic responses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here