Open Access
Hybridization selects for prime‐numbered life cycles in Magicicada : An individual‐based simulation model of a structured periodical cicada population
Author(s) -
Toivonen Jaakko,
Fromhage Lutz
Publication year - 2020
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.6270
Subject(s) - prime (order theory) , biology , population , competition (biology) , evolutionary biology , offspring , ecology , demography , mathematics , combinatorics , genetics , pregnancy , sociology
Abstract We investigate competition between separate periodical cicada populations each possessing different life‐cycle lengths. We build an individual‐based model to simulate the cicada life cycle and allow random migrations to occur between patches inhabited by the different populations. We show that if hybridization between different cycle lengths produces offspring that have an intermediate life‐cycle length, then predation acts disproportionately to select against the hybrid offspring. This happens because they emerge in low densities without the safety‐in‐numbers provided by either parent population. Thus, prime‐numbered life cycles that can better avoid hybridization are favored. However, we find that this advantage of prime‐numbered cycles occurs only if there is some mechanism that can occasionally synchronize emergence between local populations in sufficiently many patches.