Open Access
Biome stability predicts population structure of a southern African aridland bird species
Author(s) -
Wogan Guinevere O. U.,
Voelker Gary,
Oatley Graeme,
Bowie Rauri C. K.
Publication year - 2020
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.6175
Subject(s) - biome , ecology , biodiversity , population , gene flow , geography , generalist and specialist species , habitat , biology , genetic diversity , ecosystem , demography , sociology
Abstract Environments are heterogeneous in space and time, and the permeability of landscape and climatic barriers to gene flow may change over time. When barriers are present, they may start populations down the path toward speciation, but if they become permeable before the process of speciation is complete, populations may once more merge. In Southern Africa, aridland biomes play a central role in structuring the organization of biodiversity. These biomes were subject to substantial restructuring during Plio‐Pleistocene climatic fluctuations, and the imprint of this changing environment should leave genetic signatures on the species living there. Here, we investigate the role of adjacent aridland biome boundaries in structuring the genetic diversity within a widespread generalist bird, the Cape Robin‐chat ( Cossypha caffra ). We find evidence supporting a central role for aridland biomes in structuring populations across Southern Africa. Our findings support a scenario wherein populations were isolated in different biome refugia, due to separation by the exceptionally arid Nama Karoo biome. This biome barrier may have arisen through a combination of habitat instability and environmental unsuitability, and was highly unstable throughout the Plio‐Pleistocene. However, we also recovered a pattern of extensive contemporary gene flow and admixture across the Nama Karoo, potentially driven by the establishment of homesteads over the past 200 years. Thus, the barrier has become permeable, and populations are currently merging. This represents an instance where initial formation of a barrier to gene flow enabled population differentiation, with subsequent gene flow and the merging of populations after the barrier became permeable.