Open Access
Changes in tree community structure in defaunated forests are not driven only by dispersal limitation
Author(s) -
Hazelwood Kirstie,
Paine C. E. Timothy,
Cornejo Valverde Fernando H.,
Pringle Elizabeth G.,
Beck Harald,
Terborgh John
Publication year - 2020
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.6133
Subject(s) - defaunation , frugivore , biological dispersal , seed dispersal , ecology , biology , population , abundance (ecology) , seed dispersal syndrome , community structure , habitat , demography , rumen , food science , sociology , fermentation
Abstract Bushmeat hunting has reduced population sizes of large frugivorous vertebrates throughout the tropics, thereby reducing the dispersal of seeds. This is believed to affect tree population dynamics, and therefore community composition, because the seed dispersal of large‐seeded trees depends upon large‐bodied vertebrates. We report on a long‐running study of the effect of defaunation on a tropical tree community. In three censuses over 11 years, we compared sapling recruitment between a hunted and a nonhunted site, which are nearby and comparable to one another, to determine the extent to which species composition has changed through time following defaunation. We expected to find a reduced abundance of tree species that rely on large frugivores for dispersal at the hunted site and altered community structure as a consequence. Although community composition at the hunted site diverged from that at the nonhunted site, the changes were independent of dispersal syndrome, with no trend toward a decline in species that are dispersed by large, hunted vertebrates. Moreover, the loss of large‐bodied dispersers did not generate the changes in tree community composition that we hypothesized. Some species presumed to rely on large‐bodied frugivores for dispersal are effectively recruiting despite the absence of their dispersers. Synthesis: The presumption that forests depleted of large‐bodied dispersers will experience rapid, directional compositional change is not fully supported by our results. Altered species composition in the sapling layer at the hunted site, however, indicates that defaunation may be connected with changes to the tree community, but that the nature of these changes is not unidirectional as previously assumed. It remains difficult to predict how defaunation will affect tree community composition without a deeper understanding of the driving mechanisms at play.