
High‐resolution distribution modeling of a threatened short‐range endemic plant informed by edaphic factors
Author(s) -
Tomlinson Sean,
Lewandrowski Wolfgang,
Elliott Carole P.,
Miller Ben P.,
Turner Shane R.
Publication year - 2020
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.5933
Subject(s) - edaphic , threatened species , range (aeronautics) , ecology , species distribution , habitat , shrub , endemism , conservation biology , environmental niche modelling , geography , environmental science , soil water , ecological niche , biology , materials science , composite material
Short‐range endemic plants often have edaphic specializations that, with their restricted distributions, expose them to increased risk of anthropogenic extinction. Here, we present a modeling approach to understand habitat suitability for Ricinocarpos brevis R.J.F.Hend. & Mollemans (Euphorbiaceae), a threatened shrub confined to three isolated populations in the semi‐arid south‐west of Western Australia. The model is a maximum entropy species distribution projection constructed on the basis of physical soil characteristics and geomorphology data at approximately 25 m 2 (1 arc‐second) resolution. The model predicts the species to occur on shallow, low bulk density soils that are located high in the landscape. The model shows high affinity (72.1% average likelihood of occurrence) for the known populations of R. brevis , as well as identifying likely locations that are not currently known to support the species. There was a strong relationship between the likelihood of R. brevis occurrence and soil moisture content that the model estimated at a depth of 20 cm. We advocate that our approach should be standardized using publicly available data to generate testable hypotheses for the distribution and conservation management of short‐range endemic plant species for all of continental Australia.