z-logo
open-access-imgOpen Access
Taxonomy‐based hierarchical analysis of natural mortality: polar and subpolar phocid seals
Author(s) -
Trukhanova Irina S.,
Conn Paul B.,
Boveng Peter L.
Publication year - 2018
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.4522
Subject(s) - biology , life history theory , variance (accounting) , statistics , life history , ecology , mathematics , accounting , business
Abstract Knowledge of life‐history parameters is frequently lacking in many species and populations, often because they are cryptic or logistically challenging to study, but also because life‐history parameters can be difficult to estimate with adequate precision. We suggest using hierarchical Bayesian analysis ( HBA ) to analyze variation in life‐history parameters among related species, with prior variance components representing shared taxonomy, phenotypic plasticity, and observation error. We develop such a framework to analyze U‐shaped natural mortality patterns typical of mammalian life history from a variety of sparse datasets. Using 39 datasets from seals in the family Phocidae, we analyzed 16 models with different formulations for natural morality, specifically the amount of taxonomic and data‐level variance components (subfamily, species, study, and dataset levels) included in mortality hazard parameters. The highest‐ranked model according to DIC included subfamily‐, species‐, and dataset‐level parameter variance components and resulted in typical U‐shaped hazard functions for the 11 seal species in the study. Species with little data had survival schedules shrunken to the mean. We suggest that evolutionary and population ecologists consider employing HBA to quantify variation in life‐history parameters. This approach can be useful for increasing the precision of estimates resulting from a collection of (often sparse) datasets, and for producing prior distributions for populations missing life‐history data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here