z-logo
open-access-imgOpen Access
Improving estimates of environmental change using multilevel regression models of Ellenberg indicator values
Author(s) -
Carroll Tadhg,
Gillingham Phillipa K.,
Stafford Richard,
Bullock James M.,
Diaz Anita
Publication year - 2018
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.4422
Subject(s) - statistics , indicator value , weighting , plot (graphics) , metric (unit) , residual , variance (accounting) , inference , ecology , resampling , mathematics , regression , econometrics , computer science , biology , medicine , operations management , business , accounting , algorithm , artificial intelligence , economics , radiology
Ellenberg indicator values (EIVs) are a widely used metric in plant ecology comprising a semi‐quantitative description of species’ ecological requirements. Typically, point estimates of mean EIV scores are compared over space or time to infer differences in the environmental conditions structuring plant communities—particularly in resurvey studies where no historical environmental data are available. However, the use of point estimates as a basis for inference does not take into account variance among species EIVs within sampled plots and gives equal weighting to means calculated from plots with differing numbers of species. Traditional methods are also vulnerable to inaccurate estimates where only incomplete species lists are available.We present a set of multilevel (hierarchical) models—fitted with and without group‐level predictors (e.g., habitat type)—to improve precision and accuracy of plot mean EIV scores and to provide more reliable inference on changing environmental conditions over spatial and temporal gradients in resurvey studies. We compare multilevel model performance to GLMMs fitted to point estimates of mean EIVs. We also test the reliability of this method to improve inferences with incomplete species lists in some or all sample plots. Hierarchical modeling led to more accurate and precise estimates of plot‐level differences in mean EIV scores between time‐periods, particularly for datasets with incomplete records of species occurrence. Furthermore, hierarchical models revealed directional environmental change within ecological habitat types, which less precise estimates from GLMMs of raw mean EIVs were inadequate to detect. The ability to compute separate residual variance and adjusted R 2 parameters for plot mean EIVs and temporal differences in plot mean EIVs in multilevel models also allowed us to uncover a prominent role of hydrological differences as a driver of community compositional change in our case study, which traditional use of EIVs would fail to reveal. Assessing environmental change underlying ecological communities is a vital issue in the face of accelerating anthropogenic change. We have demonstrated that multilevel modeling of EIVs allows for a nuanced estimation of such from plant assemblage data changes at local scales and beyond, leading to a better understanding of temporal dynamics of ecosystems. Further, the ability of these methods to perform well with missing data should increase the total set of historical data which can be used to this end.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here