z-logo
open-access-imgOpen Access
Latitudinal variation in biophysical characteristics of avian eggshells to cope with differential effects of solar radiation
Author(s) -
Gómez Jesús,
Ramo Cristina,
Stevens Martin,
LiñánCembrano Gustavo,
Rendón Miguel A.,
Troscianko Jolyon T.,
Amat Juan A.
Publication year - 2018
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.4335
Subject(s) - eggshell , charadrius , plover , overheating (electricity) , environmental science , sunlight , thermoregulation , biology , ecology , atmospheric sciences , physics , quantum mechanics , astronomy , habitat
Solar radiation is an important driver of animal coloration, not only because of the effects of coloration on body temperature but also because coloration may protect from the deleterious effects of UV radiation. Indeed, dark coloration may protect from UV , but may increase the risk of overheating. In addition, the effect of coloration on thermoregulation should change with egg size, as smaller eggs have higher surface‐volume ratios and greater convective coefficients than larger eggs, so that small eggs can dissipate heat quickly. We tested whether the reflectance of eggshells, egg spottiness, and egg size of the ground‐nesting Kentish plover Charadrius alexandrinus is affected by maximum ambient temperature and solar radiation at breeding sites. We measured reflectance, both in the UV and human visible spectrum, spottiness, and egg size in photographs from a museum collection of plover eggshells. Eggshells of lower reflectance (darker) were found at higher latitudes. However, in southern localities where solar radiation is very high, eggshells are also of dark coloration. Eggshell coloration had no significant relationship with ambient temperature. Spotiness was site‐specific. Small eggs tended to be light‐colored. Thermal constraints may drive the observed spatial variation in eggshell coloration, which may be lighter in lower latitudes to diminish the risk of overheating as a result of higher levels of solar radiation. However, in southern localities with very high levels of UV radiation, eggshells are of dark coloration likely to protect embryos from more intense UV radiation. Egg size exhibited variation in relation to coloration, likely through the effect of surface area‐to‐volume ratios on overheating and cooling rates of eggs. Therefore, differential effects of solar radiation on functions of coloration and size of eggshells may shape latitudinal variations in egg appearance in the Kentish plover.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here