Open Access
Habitat connectivity is determined by the scale of habitat loss and dispersal strategy
Author(s) -
Edelsparre Allan H.,
Shahid Ashif,
Fitzpatrick Mark J.
Publication year - 2018
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.4072
Subject(s) - biological dispersal , habitat , ecology , biology , population , demography , sociology
Abstract Understanding factors that ameliorate the impact of habitat loss is a major focus of conservation research. One key factor influencing species persistence and evolution is the ability to disperse across increasingly patchy landscapes. Here we ask whether interpatch distance (a proxy for habitat loss) and dispersal strategy can interact to form thresholds where connectivity breaks down. We assayed dispersal across a range of interpatch distances in fruit flies carrying allelic variants of a gene known to underlie differences in dispersal strategy. Dispersal‐limited flies experienced a distinct negative threshold in connectivity at greater interpatch distances, and this was not observed in more dispersive flies. Consequently, this differential response of dispersal‐limited and more dispersive flies to decreasing connectivity suggests that habitat loss could have important implications on the evolution and maintenance of genetic variation underlying dispersal strategy.