Open Access
How to tackle chemical communication? Relative proportions versus semiquantitative determination of compounds in lizard chemical secretions
Author(s) -
GarcíaRoa Roberto,
Sáiz Jorge,
Gómara Belén,
López Pilar,
Martín José
Publication year - 2018
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.3825
Subject(s) - lizard , chemical communication , population , chemical species , biology , ecology , computer science , chemistry , medicine , pheromone , environmental health , organic chemistry
Abstract Knowledge about chemical communication in some vertebrates is still relatively limited. Squamates are a glaring example of this, even when recent evidences indicate that scents are involved in social and sexual interactions. In lizards, where our understanding of chemical communication has considerably progressed in the last few years, many questions about chemical interactions remain unanswered. A potential reason for this is the inherent complexity and technical limitations that some methodologies embody when analyzing the compounds used to convey information. We provide here a straightforward procedure to analyze lizard chemical secretions based on gas chromatography coupled to mass spectrometry that uses an internal standard for the semiquantification of compounds. We compare the results of this method with those obtained by the traditional procedure of calculating relative proportions of compounds. For such purpose, we designed two experiments to investigate if these procedures allowed revealing changes in chemical secretions 1) when lizards received previously a vitamin dietary supplementation or 2) when the chemical secretions were exposed to high temperatures. Our results show that the procedure based on relative proportions is useful to describe the overall chemical profile, or changes in it, at population or species levels. On the other hand, the use of the procedure based on semiquantitative determination can be applied when the target of study is the variation in one or more particular compounds of the sample, as it has proved more accurate detecting quantitative variations in the secretions. This method would reveal new aspects produced by, for example, the effects of different physiological and climatic factors that the traditional method does not show.