z-logo
open-access-imgOpen Access
Adaptation to fluctuations in temperature by nine species of bacteria
Author(s) -
Saarinen Kati,
Laakso Jouni,
Lindström Leena,
Ketola Tarmo
Publication year - 2018
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.3823
Subject(s) - adaptation (eye) , constant (computer programming) , experimental evolution , biology , ecology , evolutionary biology , biological system , physics , genetics , computer science , neuroscience , gene , programming language
Abstract Rapid environmental fluctuations are ubiquitous in the wild, yet majority of experimental studies mostly consider effects of slow fluctuations on organism. To test the evolutionary consequences of fast fluctuations, we conducted nine independent experimental evolution experiments with bacteria. Experimental conditions were same for all species, and we allowed them to evolve either in fluctuating temperature alternating rapidly between 20°C and 40°C or at constant 30°C temperature. After experimental evolution, we tested the performance of the clones in both rapid fluctuation and in constant environments (20°C, 30°C and 40°C). Results from experiments on these nine species were combined meta‐analytically. We found that overall the clones evolved in the fluctuating environment had evolved better efficiency in tolerating fluctuations (i.e., they had higher yield in fluctuating conditions) than the clones evolved in the constant environment. However, we did not find any evidence that fluctuation‐adapted clones would have evolved better tolerance to any measured constant environments (20°C, 30°C, and 40°C). Our results back up recent empirical findings reporting that it is hard to predict adaptations to fast fluctuations using tolerance curves.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here