z-logo
open-access-imgOpen Access
Impacts of natural factors and farming practices on greenhouse gas emissions in the North China Plain: A meta‐analysis
Author(s) -
Xu Cong,
Han Xiao,
Bol Roland,
Smith Pete,
Wu Wenliang,
Meng Fanqiao
Publication year - 2017
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.3211
Subject(s) - greenhouse gas , environmental science , tillage , fertilizer , agronomy , manure , growing season , agriculture , conventional tillage , biology , ecology
Requirements for mitigation of the continued increase in greenhouse gas ( GHG ) emissions are much needed for the North China Plain ( NCP ). We conducted a meta‐analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N 2 O was the main component of the area‐scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH , and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP . The N 2 O emissions increased exponentially with mineral fertilizer N application rate, with y  =   0.2389e 0.0058 x for wheat season and y  =   0.365e 0.0071 x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha −1 for wheat and maize, respectively) exhibited great potential for reducing N 2 O emissions, by 0.39 (29%) and 1.71 (56%) kg N 2 O‐N ha −1  season −1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N 2 O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no‐tillage significantly reduced N 2 O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no‐tillage practice. Straw incorporation significantly increased annual N 2 O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom