z-logo
open-access-imgOpen Access
Conceptualizing ecosystem tipping points within a physiological framework
Author(s) -
Harley Christopher D. G.,
Connell Sean D.,
Doubleday Zoë A.,
Kelaher Brendan,
Russell Bayden D.,
Sarà Gianluca,
Helmuth Brian
Publication year - 2017
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.3164
Subject(s) - ecosystem , ecology , trophic level , counterintuitive , tipping point (physics) , climate change , environmental change , community , psychological resilience , stressor , environmental resource management , environmental science , biology , psychology , electrical engineering , engineering , philosophy , epistemology , neuroscience , psychotherapist
Connecting the nonlinear and often counterintuitive physiological effects of multiple environmental drivers to the emergent impacts on ecosystems is a fundamental challenge. Unfortunately, the disconnect between the way “stressors” (e.g., warming) is considered in organismal (physiological) and ecological (community) contexts continues to hamper progress. Environmental drivers typically elicit biphasic physiological responses, where performance declines at levels above and below some optimum. It is also well understood that species exhibit highly variable response surfaces to these changes so that the optimum level of any environmental driver can vary among interacting species. Thus, species interactions are unlikely to go unaltered under environmental change. However, while these nonlinear, species‐specific physiological relationships between environment and performance appear to be general, rarely are they incorporated into predictions of ecological tipping points. Instead, most ecosystem‐level studies focus on varying levels of “stress” and frequently assume that any deviation from “normal” environmental conditions has similar effects, albeit with different magnitudes, on all of the species within a community. We consider a framework that realigns the positive and negative physiological effects of changes in climatic and nonclimatic drivers with indirect ecological responses. Using a series of simple models based on direct physiological responses to temperature and ocean p CO 2 , we explore how variation in environment‐performance relationships among primary producers and consumers translates into community‐level effects via trophic interactions. These models show that even in the absence of direct mortality, mismatched responses resulting from often subtle changes in the physical environment can lead to substantial ecosystem‐level change.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here