Open Access
Environmental stress linked to consumption of maternally derived carotenoids in brown trout embryos ( Salmo trutta )
Author(s) -
Wilkins Laetitia G. E.,
Marques da Cunha Lucas,
Glauser Gaëtan,
Vallat Armelle,
Wedekind Claus
Publication year - 2017
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.3076
Subject(s) - carotenoid , salmo , biology , hatching , embryo , brown trout , zeaxanthin , maternal effect , sire , lutein , zoology , botany , offspring , genetics , fishery , fish <actinopterygii> , pregnancy
Abstract The yellow, orange, or red colors of salmonid eggs are due to maternally derived carotenoids whose functions are not sufficiently understood yet. Here, we studied the significance of naturally acquired carotenoids as maternal environmental effects during embryo development in brown trout ( Salmo trutta ). We collected eggs from wild females, quantified their egg carotenoid content, fertilized them in vitro in full‐factorial breeding blocks to separate maternal from paternal effects, and raised 3,278 embryos singly at various stress conditions until hatching. We found significant sire effects that revealed additive genetic variance for embryo survival and hatching time. Dam effects were 5.4 times larger than these sire effects, indicating that maternal environmental effects play an important role in determining embryo stress tolerance. Of the eight pigment molecules that we targeted, only astaxanthin, zeaxanthin (that both affected egg redness), and lutein were detected above our confidence thresholds. No strong link could be observed between carotenoid content in unfertilized eggs and embryo mortality or hatching timing. However, the consumption of carotenoids during our stress treatment was negatively correlated to embryo survival among sib groups and explained about 14% of the maternal environmental variance. We conclude that maternally derived carotenoids play a role in the ability of embryos to cope with environmental stress, but that the initial susceptibility to the organic pollution was mainly determined by other factors.