z-logo
open-access-imgOpen Access
Population genomics reveals a candidate gene involved in bumble bee pigmentation
Author(s) -
Pimsler Meaghan L.,
Jackson Jason M.,
Lozier Jeffrey D.
Publication year - 2017
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.2935
Subject(s) - biology , subspecies , evolutionary biology , candidate gene , genetics , genetic variation , genomics , copy number variation , population , gene , genome , zoology , demography , sociology
Variation in bumble bee color patterns is well‐documented within and between species. Identifying the genetic mechanisms underlying such variation may be useful in revealing evolutionary forces shaping rapid phenotypic diversification. The widespread North American species Bombus bifarius exhibits regional variation in abdominal color forms, ranging from red‐banded to black‐banded phenotypes and including geographically and phenotypically intermediate forms. Identifying genomic regions linked to this variation has been complicated by strong, near species level, genome‐wide differentiation between red‐ and black‐banded forms. Here, we instead focus on the closely related black‐banded and intermediate forms that both belong to the subspecies B. bifarius nearcticus . We analyze an RNA sequencing (RNAseq) data set and identify a cluster of single nucleotide polymorphisms (SNPs) within one gene, Xanthine dehydrogenase/oxidase ‐like, that exhibit highly unusual differentiation compared to the rest of the sequenced genome. Homologs of this gene contribute to pigmentation in other insects, and results thus represent a strong candidate for investigating the genetic basis of pigment variation in B. bifarius and other bumble bee mimicry complexes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here