z-logo
open-access-imgOpen Access
Does the different photosynthetic pathway of plants affect soil respiration in a subtropical wetland?
Author(s) -
Chen Jingrui,
Wang Qiulin,
Li Ming,
Liu Fan,
Li Wei
Publication year - 2016
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.2523
Subject(s) - soil respiration , respiration , photosynthesis , biomass (ecology) , wetland , environmental science , agronomy , vegetation (pathology) , botany , biology , ecology , medicine , pathology
Plants with different photosynthetic pathways could produce different amounts and types of root exudates and debris which may affect soil respiration rates. Therefore, wetland vegetation succession between plants with different photosynthetic pathways may ultimately influence the wetland carbon budget. The middle and lower reaches of the Yangtze River has the largest floodplain wetland group in China. Tian'e Zhou wetland reserve (29°48'N, 112°33′E) is located in Shishou city, Hubei province and covers about 77.5 square kilometers. Hemathria altissima (C4) was found gradually being replaced by Carex argyi (C3) for several years in this place. An in situ experiment was conducted in Tian'e Zhou wetland to determine the change of soil respiration as the succession proceeds. Soil respiration, substrate‐induced respiration, and bacterial respiration of the C4 species was greater than those of the C3 species, but below‐ground biomass and fungal respiration of the C4 species was less than that of the C3 species. There were no significant differences in above‐ground biomass between the two species. Due to the higher photosynthesis capability, higher soil respiration and lower total plant biomass, we inferred that the C4 species, H. altissima, may transport more photosynthate below‐ground as a substrate for respiration. The photosynthetic pathway of plants might therefore play an important role in regulating soil respiration. As C. argyi replaces H. altissima, the larger plant biomass and lower soil respiration would indicate that the wetland in this area could fix more carbon in the soil than before.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here