z-logo
open-access-imgOpen Access
Within and between population variation in plant traits predicts ecosystem functions associated with a dominant plant species
Author(s) -
Breza Lauren C.,
Souza Lara,
Sanders Nathan J.,
Classen Aimée T.
Publication year - 2012
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.223
Subject(s) - biology , intraspecific competition , ecosystem , ecology , population , inflorescence , biomass (ecology) , productivity , demography , sociology , economics , macroeconomics
Abstract Linking intraspecific variation in plant traits to ecosystem carbon uptake may allow us to better predict how shift in populations shape ecosystem function. We investigated whether plant populations of a dominant old‐field plant species ( Solidago altissima ) differed in carbon dynamics and if variation in plant traits among genotypes and between populations predicted carbon dynamics. We established a common garden experiment with 35 genotypes from three populations of S. altissima from either Tennessee (southern populations) or Connecticut (northern populations) to ask whether: (1) southern and northern Solidago populations will differ in aboveground productivity, leaf area, flowering time and duration, and whole ecosystem carbon uptake, (2) intraspecific trait variation (growth and reproduction) will be related to intraspecific variation in gross ecosystem CO 2 exchange (GEE) and net ecosystem CO 2 exchange (NEE) within and between northern and southern populations. GEE and NEE were 4.8× and 2× greater in southern relative to northern populations. Moreover, southern populations produced 13× more aboveground biomass and 1.4× more inflorescence mass than did northern populations. Flowering dynamics (first‐ and last‐day flowering and flowering duration) varied significantly among genotypes in both the southern and northern populations, but plant performance and ecosystem function did not. Both productivity and inflorescence mass predicted NEE and GEE between S. altissima southern and northern populations. Taken together, our data demonstrate that variation between S. altissima populations in performance and flowering traits are strong predictors of ecosystem function in a dominant old‐field species and suggest that populations of the same species might differ substantially in their response to environmental perturbations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here