z-logo
open-access-imgOpen Access
Dispersal by rodent caching increases seed survival in multiple ways in canopy‐fire ecosystems
Author(s) -
Peterson N. B.,
Parker V. T.
Publication year - 2016
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.2156
Subject(s) - seed dispersal , biological dispersal , soil seed bank , canopy , biology , ecology , chaparral , ericaceae , ecosystem , fire regime , disturbance (geology) , environmental science , botany , germination , population , paleontology , demography , sociology
Seed‐caching rodents have long been seen as important actors in dispersal ecology. Here, we focus on the interactions with plants in a fire‐disturbance community, specifically Arctostaphylos species (Ericaceae) in California chaparral. Although mutualistic relationships between caching rodents and plants are well studied, little is known how this type of relationship functions in a disturbance‐driven system, and more specifically to systems shaped by fire disturbance. By burying seeds in the soil, rodents inadvertently improve the probability of seed surviving high temperatures produced by fire. We test two aspects of vertical dispersal, depth of seed and multiple seeds in caches as two important dimensions of rodent‐caching behavior. We used a laboratory experimental approach to test seed survival under different heating conditions and seed bank structures. Creating a synthetic soil seed bank and synthetic fire/heating in the laboratory allowed us to have control over surface heating, depth of seed in the soil, and seed cache size. We compared the viability of Arctostaphylos viscida seeds from different treatment groups determined by these factors and found that, as expected, seeds slightly deeper in the soil had substantial increased chances of survival during a heating event. A key result was that some seeds within a cache in shallow soil could survive fire even at a depth with a killing heat pulse compared to isolated seeds; temperature measurements indicated lower temperatures immediately below caches compared to the same depth in adjacent soil. These results suggest seed caching by rodents increases seed survival during fire events in two ways, that caches disrupt heat flow or that caches are buried below the heat pulse kill zone. The context of natural disturbance drives the significance of this mutualism and further expands theory regarding mutualisms into the domain of disturbance‐driven systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here