Open Access
Impacts of temperature on giant panda habitat in the north Minshan Mountains
Author(s) -
Liu Gang,
Guan Tianpei,
Dai Qiang,
Li Huixin,
Gong Minghao
Publication year - 2016
Publication title -
ecology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.17
H-Index - 63
ISSN - 2045-7758
DOI - 10.1002/ece3.1901
Subject(s) - habitat , ailuropoda melanoleuca , bamboo , climate change , ecology , geography , elevation (ballistics) , vegetation (pathology) , latitude , physical geography , range (aeronautics) , economic shortage , environmental science , biology , geodesy , pathology , government (linguistics) , medicine , linguistics , philosophy , materials science , geometry , mathematics , composite material
Abstract Understanding the impacts of meteorological factors on giant pandas is necessary for future conservation measures in response to global climate change. We integrated temperature data with three main habitat parameters (elevation, vegetation type, and bamboo species) to evaluate the influence of climate change on giant panda habitat in the northern Minshan Mountains using a habitat assessment model. Our study shows that temperature (relative importance = 25.1%) was the second most important variable influencing giant panda habitat excepting the elevation. There was a significant negative correlation between temperature and panda presence ( ρ = −0.133, P < 0.05), and the temperature range preferred by giant pandas within the study area was 18–21°C, followed by 15–17°C and 22–24°C. The overall suitability of giant panda habitats will increase by 2.7%, however, it showed a opposite variation patterns between the eastern and northwestern region of the study area. Suitable and subsuitable habitats in the northwestern region of the study area, which is characterized by higher elevation and latitude, will increase by 18007.8 hm 2 (9.8% habitat suitability), while the eastern region will suffer a decrease of 9543.5 hm 2 (7.1% habitat suitability). Our results suggest that increasing areas of suitable giant panda habitat will support future giant panda expansion, and food shortage and insufficient living space will not arise as problems in the northwest Minshan Mountains, which means that giant pandas can adapt to climate change, and therefore may be resilient to climate change. Thus, for the safety and survival of giant pandas in the Baishuijiang Reserve, we propose strengthening the giant panda monitoring program in the west and improving the integrity of habitats to promote population dispersal with adjacent populations in the east.