Premium
Niche partitioning in a guild of invasive mammalian predators
Author(s) -
Garvey Patrick M.,
Glen Alistair S.,
Clout Mick N.,
Nichols Margaret,
Pech Roger P.
Publication year - 2022
Publication title -
ecological applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.864
H-Index - 213
eISSN - 1939-5582
pISSN - 1051-0761
DOI - 10.1002/eap.2566
Subject(s) - guild , niche , predation , ecology , biology , intraguild predation , niche segregation , ecological niche , predator , habitat
Abstract Predators compete aggressively for resources, establishing trophic hierarchies that influence ecosystem structure. Competitive interactions are particularly important in invaded ecosystems where introduced predators can suppress native prey species. We investigated whether niche partitioning exists within a guild of invasive mammalian predators and determined the consequences for native species. Over 4405 camera‐trap days, we assessed interactions among three invasive predators: two apex predators (feral cats Felis catus and ferrets Mustela furo ) and a mesopredator (stoats Mustela erminea ), in relation to their primary prey (lagomorphs, rodents and birds) and habitat use. Further, we tested for mesopredator release by selectively removing cats and ferrets in a pulse perturbation experiment. We found compelling evidence of niche partitioning; spatiotemporal activity of apex predators maximized access to abundant invasive prey, with ferrets targeting lagomorphs and cats targeting rodents. Mesopredators adjusted their behavior to reduce the risk of interference competition, thereby restricting access to abundant prey but increasing predation pressure on diurnal native birds. Stoats were only recorded at the treatment site after both larger predators were removed, becoming the most frequently detected predator at 6 months post‐perturbation. We suggest there is spatial and resource partitioning within the invasive predator guild, but that this is incomplete, and avoidance is achieved by temporal partitioning within overlapping areas. Niche partitioning among invasive predators facilitates coexistence, but simultaneously intensifies predation pressure on vulnerable native species.