Premium
Generation and characterization of pathogenic Mab21l2(R51C) mouse model
Author(s) -
Tsang ShunWa,
Guo Yanjiang,
Chan LongHei,
Huang Yingyu,
Chow King L.
Publication year - 2018
Publication title -
genesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.093
H-Index - 110
eISSN - 1526-968X
pISSN - 1526-954X
DOI - 10.1002/dvg.23261
Subject(s) - phenotype , mutant , biology , mutation , eye development , exome sequencing , genetics , pathology , medicine , gene
Abstract MAB21L2(R51C) is one of the five documented MAB21L2 mutations in human patients with bilateral eye malformations identified via whole exome sequencing. In addition to the eye abnormality, patients with MAB21L2 R51C/+ mutation also have skeletal dysplasia and intellectual disability. To evaluate the pathology of this mutant allele systematically in understanding the functional role of MAB21L2 in human development, we introduce the R51C mutation into the mouse genome by CRISPR/Cas9 system to generate a mouse model for detailed characterization. The Mab21l2 R51C/+ mice have eyeless phenotype and skeletal abnormalities. Micro‐computed tomography (micro‐CT) analysis showed the Mab21l2 R51C/+ mice have no eye balls but with two abnormal tissues underneath the brain. Histological analysis revealed that the early eye development in the mutant embryos is interrupted. In addition, Mab21l2 R51C/+ mice also have joint fusion phenotype; the humerus is fused with radius, whereas femur is fused with tibia. Limbs in the mutant animals are distinctly shorter than the wild type; and deltoid tuberosities in humeri are absent in these Mab21l2 R51C/+ mice. In summary, we showed that our Mab21l2 R51C/+ mutant mice have recapitulated the pathological features in eye and bone of human patients. Further analyses of the mutant phenotype with molecular markers will provide insight on how MAB21L2 guides the optic differentiation and skeletogenesis, revealing specific underlying pathogenic mechanism of the MAB21L2(R51C) mutation.