z-logo
Premium
Insights on the role of hox genes in the emergence of the pentadactyl ground state
Author(s) -
Kherdjemil Yacine,
Kmita Marie
Publication year - 2018
Publication title -
genesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.093
H-Index - 110
eISSN - 1526-968X
pISSN - 1526-954X
DOI - 10.1002/dvg.23046
Subject(s) - hox gene , tetrapod (structure) , biology , numerical digit , evolutionary biology , vertebrate , extant taxon , gene , genetics , paleontology , transcription factor , arithmetic , mathematics
Tetrapods are characterized by the presence of digits at the distal end of their limbs, which have emerged during the transition from fins to limbs. While variations in digit number are observed in extant tetrapods, most have five digits per limb and divergence from this pentadactyl ground state is always a reduction in digit number. Paleontological data revealed that stem‐group tetrapods were polydactylous indicating that the evolution from fish fin to modern tetrapod limbs involved two major transitions; the emergence of digits and the shift from polydactyly to pentadactyly. The absence of living polydactyl tetrapod species is a major limitation in assessing the foundation of the pentadactyl constraint. Nonetheless, several genes having the capacity of modulating digit number have been identified and studying their functional and regulatory phylogeny will likely be critical in our comprehension of the emergence of the pentadactyl state. In this review, we provide an overview of the data obtained from mouse genetics that uncovered the role of Hox genes in controlling digit number and discuss regulatory changes that could have been implicated in the emergence of the pentadactyl ground state.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here