Premium
Short hairpin RNA is more effective than long hairpin RNA in eliciting pointed loss‐of‐function phenotypes in Drosophila
Author(s) -
Bartoletti Rosa,
Capozzoli Benjamin,
Moore Joneisha,
Moran Jaynie,
Shrawder Brandy,
Vivekanand Pavithra
Publication year - 2017
Publication title -
genesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.093
H-Index - 110
eISSN - 1526-968X
pISSN - 1526-954X
DOI - 10.1002/dvg.23036
Subject(s) - small hairpin rna , rna interference , biology , gene knockdown , activator (genetics) , rna silencing , rna , phenotype , microbiology and biotechnology , schneider 2 cells , transcription (linguistics) , genetics , gene , linguistics , philosophy
Pointed (Pnt) is a transcriptional activator that functions downstream of the highly conserved Receptor Tyrosine Kinase (RTK) signaling pathway. Pnt is an ETS family transcription factor and encodes for two proteins, PntP1 and PntP2. However, while PntP1 is constitutively active, PntP2 is only active after being phosphorylated by MAPK in the RTK pathway. As mutations in pnt perturb the development of several tissues, we wanted to examine the effect and efficacy of using RNAi to target Pnt. We have expressed pnt RNAi in the eyes, oocyte, and heart cells using three different RNAi lines: Valium20, Valium10, and VDRC. Valium20 is distinct since it generates a short hairpin RNA (shRNA), while Valium10 and VDRC produce long hairpin dsRNA. We found that for each tissue examined Valium20 exhibited the strongest phenotype while the Valium10 and VDRC lines produced varying levels of severity and that the long hairpin RNA produced by the Valium10 and VDRC lines are unable to effectively knockdown pnt in embryonic tissues.