z-logo
Premium
Inducible transient expression of Smpd3 prevents early lethality in fro/fro mice
Author(s) -
Alebrahim Sharifa,
Khavandgar Zohreh,
Marulanda Juliana,
Murshed Monzur
Publication year - 2014
Publication title -
genesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.093
H-Index - 110
eISSN - 1526-968X
pISSN - 1526-954X
DOI - 10.1002/dvg.22765
Subject(s) - biology , embryo , gene expression , phenotype , gene , knockout mouse , microbiology and biotechnology , genetics
Summary Sphingomyelin phosphodiesterase 3 (SMPD3) is a pleiotropic lipid metabolizing enzyme involved in multiple physiological processes. A deletion mutation in the murine Smpd3 gene called fragilitas ossium (fro ) leads to severe skeletal abnormalities in the developing fro/fro embryos. Although fro/fro mice can be useful to study many different aspects of SMPD3 functions, their perinatal lethality makes it difficult to generate a sufficient number of mice for controlled studies. In fact, on the C57BL/6 genetic background, none of the fro/fro mice survive beyond the perinatal stage. In this study, we used the “Tet‐On” inducible gene expression system to express Smpd3 transiently in fro/fro;ROSA‐rtTA;TRE‐Smpd3 embryos on the C57BL/6 background. This induced Smpd3 expression corrected all the skeletal abnormalities in these embryos and prevented their early death. However, induction of Smpd3 expression in the adolescent fro/fro;ROSA‐rtTA;TRE‐Smpd3 mice was not sufficient to correct the defects in trabecular bone mineralization and the impaired growth of the long bones. This novel mouse model will be a useful tool to study SMPD3 biology in vivo. genesis 52:408–416, 2014. © 2014 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom