Premium
The molecular genetics of avian sex determination and its manipulation
Author(s) -
Ayers Katie L.,
Smith Craig A.,
Lambeth Luke S.
Publication year - 2013
Publication title -
genesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.093
H-Index - 110
eISSN - 1526-968X
pISSN - 1526-954X
DOI - 10.1002/dvg.22382
Subject(s) - biology , sexual differentiation , embryo , gene , model organism , genetics , developmental biology , transgene , evolutionary biology , computational biology
The chicken ( Gallus gallus domesticus ) has long been a useful model for developmental biologists. The developing avian embryo is easily accessible and fertile eggs are widely available. In addition, the embryo is also amenable to genetic manipulation allowing studies on many important morphological and cellular processes. More recently, the ability to directly manipulate gene expression through the production of transgenic or mutant chicken embryos by viral delivery methods has been useful to analyse gene function in a wide range of tissues, including the developing gonads. Chickens are amniotes and their development closely resembles that of mammals, implying underlying genetic conservation of key pathways, including sex development. Studies of sex determination and gonadal development in this model are providing insight into avian ovarian and testis developmental pathways and their evolution. Indeed, the chicken embryo is a suitable model for the functional analysis of genes implicated in human disorders of sex development, and studies in this model will complement those carried out in mammalian models such as the mouse. In this review we discuss the current knowledge of sex determination and sexual differentiation in avians, using chicken as model. We review how sex chromosomes contribute to this process and provide current information on our understanding of gonadal sexual differentiation at both the cellular and molecular level in the chicken embryo. Finally, we review the methods currently used to investigate the role of genes and signaling pathways during sexual differentiation, and discuss how these methods may contribute to further understanding of vertebrate gonadogenesis. genesis 51:325–336. © 2013 Wiley Periodicals, Inc.