z-logo
Premium
Visualization of inactive X chromosome in preimplantation embryos utilizing MacroH2A–EGFP transgenic mouse
Author(s) -
Soma Atsumi,
Sato Kenzo,
Nakanishi Tomoko
Publication year - 2013
Publication title -
genesis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.093
H-Index - 110
eISSN - 1526-968X
pISSN - 1526-954X
DOI - 10.1002/dvg.22369
Subject(s) - biology , microbiology and biotechnology , embryo , green fluorescent protein , xist , transgene , genetically modified mouse , blastocyst , x inactivation , transgenesis , x chromosome , embryogenesis , genetics , gene , reproductive technology
Summary One of the two X chromosomes is inactivated in female eutherian mammals. MacroH2A, an unusual histone variant, is known to accumulate on the inactive X chromosome (Xi) during early embryo development, and can thus be used as a marker of the Xi. In this study, we produced a transgenic mouse line expressing the mouse MacroH2A1.2–enhanced green fluorescent protein (EGFP) fusion protein (MacroH2A–EGFP) under the control of a CAG promoter and verified whether MacroH2A–EGFP would be useful for tracing the process of X chromosome inactivation by visualizing Xi noninvasively in preimplantation embryos. In transgenic female mice, MacroH2A–EGFP formed a fluorescent focus in nuclei throughout the body. In female blastocysts, the MacroH2A–EGFP focus colocalized with Xist RNA, well known as a marker of Xi. Fluorescence marking of Xi was first observed in some embryonic cells between the 4‐ and 8‐cell stages. These results demonstrate that MacroH2A can bind to the Xi by around the 8‐cell stage in female mouse embryos. These MacroH2A–EGFP transgenic mice might be useful to elucidate the process of X chromosome inactivation during the mouse life cycle. genesis 51:259–267. © 2013 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here