Premium
Modeling genetic epilepsies in a dish
Author(s) -
Niu Wei,
Parent Jack M.
Publication year - 2020
Publication title -
developmental dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.634
H-Index - 141
eISSN - 1097-0177
pISSN - 1058-8388
DOI - 10.1002/dvdy.79
Subject(s) - induced pluripotent stem cell , biology , neuroscience , autism , embryonic stem cell , genome editing , human induced pluripotent stem cells , organoid , epilepsy , regenerative medicine , computational biology , crispr , stem cell , genetics , gene , psychology , developmental psychology
Human pluripotent stem cells (hPSCs), including embryonic and induced pluripotent stem cells, provide a powerful platform for mechanistic studies of disorders of neurodevelopment and neural networks. hPSC models of autism, epilepsy, and other neurological disorders are also advancing the path toward designing and testing precision therapies. The field is evolving rapidly with the addition of genome‐editing approaches, expanding protocols for the two‐dimensional (2D) differentiation of different neuronal subtypes, and three‐dimensional (3D) human brain organoid cultures. However, the application of these techniques to study complex neurological disorders, including the epilepsies, remains a challenge. Here, we review previous work using both 2D and 3D hPSC models of genetic epilepsies, as well as recent advances in the field. We also describe new strategies for applying these technologies to disease modeling of genetic epilepsies, and discuss current challenges and future directions.