z-logo
Premium
Local heat‐shock mediated multi‐color labeling visualizing behaviors of enteric neural crest cells associated with division and neurogenesis in zebrafish gut
Author(s) -
Kuwata Mai,
Nikaido Masataka,
Hatta Kohei
Publication year - 2019
Publication title -
developmental dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.634
H-Index - 141
eISSN - 1097-0177
pISSN - 1058-8388
DOI - 10.1002/dvdy.36
Subject(s) - biology , neural crest , zebrafish , neurogenesis , microbiology and biotechnology , enteric nervous system , cell division , anatomy , sox10 , neuroscience , cell , embryo , genetics , gene
Background The enteric nervous system (ENS) is derived from enteric neural crest cells (ENCCs) that migrate into the gut. The zebrafish larva is a good model to study ENCC development due to its simplicity and transparency. However, little is known how individual ENCCs divide and become neurons. Results Here, by applying our new method of local heat‐shock mediated Cre‐recombination around the dorsal vagal area of zebrafish embryos we produced multicolored clones of ENCCs, and performed in vivo time‐lapse imaging from ca. 3.5 to 4 days post‐fertilization after arrival of ENCCs in the gut. Individual ENCCs migrated in various directions and were highly intermingled. The cell divisions were not restricted to a specific position in the gut. Antibody staining after imaging with anti‐HuC/D and anti‐Sox10 showed that an ENCC produced two neurons, or formed a neuron and an additional ENCC that further divided. At division, the daughter cells immediately separated. Afterward, some made soma‐soma contact with other ENCCs. Conclusions We introduced a new method of visualizing individual ENCCs in the zebrafish gut, describing their behaviors associated with cell division, providing a foundation to study the mechanism of proliferation and neurogenesis in the ENS in vertebrates.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here