z-logo
Premium
Phosphosite T674A mutation in kinesin family member 3A fails to reproduce tissue and ciliary defects characteristic of CILK1 loss of function
Author(s) -
Gailey Casey D.,
Wang Eric J.,
Jin Li,
Ahmadi Sean,
Brautigan David L.,
Li Xudong,
Xu Wenhao,
Scott Michael M.,
Fu Zheng
Publication year - 2021
Publication title -
developmental dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.634
H-Index - 141
eISSN - 1097-0177
pISSN - 1058-8388
DOI - 10.1002/dvdy.252
Subject(s) - ciliogenesis , ciliopathies , cilium , biology , intraflagellar transport , microbiology and biotechnology , kinesin , phosphorylation , genetics , microtubule , mutant , gene , phenotype
Background Kinesin family member 3A (KIF3A) is a molecular motor protein in the heterotrimeric kinesin‐2 complex that drives anterograde intraflagellar transport. This process plays a pivotal role in both biogenesis and maintenance of the primary cilium that supports tissue development. Ciliogenesis associated kinase 1 (CILK1) phosphorylates human KIF3A at Thr672. CILK1 loss of function causes ciliopathies that manifest profound and multiplex developmental defects, including hydrocephalus, polydactyly, shortened and hypoplastic bones and alveoli airspace deficiency, leading to perinatal lethality. Prior studies have raised the hypothesis that CILK1 phosphorylation of KIF3A is critical for its regulation of organ development. Results We produced a mouse model with phosphorylation site Thr674 in mouse Kif3a mutated to Ala. Kif3a T674A homozygotes are viable and exhibit no skeletal and brain abnormalities, and only mildly reduced airspace in alveoli. Mouse embryonic fibroblasts carrying Kif3a T674A mutation show a normal rate of ciliation and a moderate increase in cilia length. Conclusion These results indicate that eliminating Kif3a Thr674 phosphorylation by Cilk1 is insufficient to reproduce the severe developmental defects in ciliopathies caused by Cilk1 loss of function. This suggests KIF3A‐Thr672 phosphorylation by CILK1 is not essential for tissue development and other substrates are involved in CILK1 ciliopathies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here