Premium
Expression of chondroitin/dermatan sulfate glycosyltransferases during early zebrafish development
Author(s) -
FilipekGórniok Beata,
Holmborn Katarina,
Haitina Tatjana,
Habicher Judith,
Oliveira Marta Bastos,
Hellgren Charlotte,
Eriksson Inger,
Kjellén Lena,
Kreuger Johan,
Ledin Johan
Publication year - 2013
Publication title -
developmental dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.634
H-Index - 141
eISSN - 1097-0177
pISSN - 1058-8388
DOI - 10.1002/dvdy.23981
Subject(s) - glycosyltransferase , zebrafish , biology , chondroitin , chondroitin sulfate , gene , biochemistry , dermatan sulfate , microbiology and biotechnology , glycosaminoglycan
Background: Chondroitin/dermatan sulfate (CS/DS) proteoglycans present in the extracellular matrix have important structural and regulatory functions. Results: Six human genes have previously been shown to catalyze CS/DS polymerization. Here we show that one of these genes, chpf , is represented by two copies in the zebrafish genome, chpfa and chpfb , while the other five human CS/DS glycosyltransferases csgalnact1, csgalnact2, chpf2, chsy1, and chsy3 all have single zebrafish orthologues. The putative zebrafish CS/DS glycosyltransferases are spatially and temporally expressed. Interestingly, overlapping expression of multiple glycosyltransferases coincides with high CS/DS deposition. Finally, whereas the relative levels of the related polysaccharide HS reach steady‐state at around 2 days post fertilization, there is a continued relative increase of the CS amounts per larvae during the first 6 days of development, matching the increased cartilage formation. Conclusions: There are 7 CS/DS glycosyltransferases in zebrafish, which, based on homology, can be divided into the CSGALNACT, CHSY, and CHPF families. The overlap between intense CS/DS production and the expression of multiple CS/DS glycosyltransferases suggests that efficient CS/DS biosynthesis requires a combination of several glycosyltransferases. Developmental Dynamics 242:964–975, 2013 . © 2013 Wiley Periodicals, Inc.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom