Premium
Chromosome remodeling and differentiation of tetraploid embryos during preimplantation development
Author(s) -
Park MiRyung,
Lee AhReum,
Bui HongThuy,
Park Chankyu,
Park KeunKyu,
Cho SsangGoo,
Song Hyuk,
Kim JaeHwan,
Van Thuan Nguyen,
Kim JinHoi
Publication year - 2011
Publication title -
developmental dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.634
H-Index - 141
eISSN - 1097-0177
pISSN - 1058-8388
DOI - 10.1002/dvdy.22653
Subject(s) - biology , microbiology and biotechnology , embryo , chromosome , genetics , gene
Although it is known that the tetraploid embryo contributes only to the placenta, the question of why tetraploid embryos differentiate into placenta remains unclear. To study the effect of electrofusion on the development of mouse tetraploid oocytes, mouse two‐cell embryos were fused and cultured in vitro in Chatot‐Ziomek‐Bavister medium. After electrofusion, two chromosome sets from the tetraploid blastomere were individually duplicated before nuclear fusion. At 8–10 hr after electrofusion, each chromosome set was condensing and the nuclear membrane was breaking down. Around 12–14 hr after electrofusion, the two chromosome sets had combined together and had reached the second mitotic metaphase, at this point with 8n sets of chromosomes. Interestingly, we discovered that expression of OCT4, an inner cell mass cells biomarker, is lost by the tetraploid expanded blastocysts, but that CDX2, a trophectoderm cells biomarker, is strongly expressed at this stage. This observation provides evidence clarifying why tetraploid embryos contribute only to trophectoderm. Developmental Dynamics 240:1660–1669, 2011. © 2011 Wiley‐Liss, Inc.