z-logo
Premium
Different roles for KIF17 and kinesin II in photoreceptor development and maintenance
Author(s) -
Insinna Christine,
Humby Monica,
Sedmak Tina,
Wolfrum Uwe,
Besharse Joseph C.
Publication year - 2009
Publication title -
developmental dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.634
H-Index - 141
eISSN - 1097-0177
pISSN - 1058-8388
DOI - 10.1002/dvdy.21956
Subject(s) - kinesin , cilium , biology , microtubule , axoneme , zebrafish , microbiology and biotechnology , caenorhabditis elegans , ciliogenesis , intraflagellar transport , genetics , gene , flagellum
Kinesin 2 family members are involved in transport along ciliary microtubules. In Caenorhabditis elegans channel cilia, kinesin II and OSM‐3 cooperate along microtubule doublets of the axoneme middle segment, whereas OSM‐3 alone works on microtubule singlets to elongate the distal segment. Among sensory cilia, vertebrate photoreceptors share a similar axonemal structure with C. elegans channel cilia, and deficiency in either kinesin II or KIF17, the homologue of OSM‐3, results in disruption of photoreceptor organization. However, direct comparison of the two effects is confounded by the use of different species and knockdown strategies in prior studies. Here, we directly compare the effects of dominant‐negative kinesin II and KIF17 expression in zebrafish cone photoreceptors. Our data indicate that dominant‐negative kinesin II disrupts function at the level of the inner segment and synaptic terminal and results in cell death. In contrast, dominant‐negative KIF17 has no obvious effect on inner segment or synaptic organization but has an immediate impact on outer segment assembly. Developmental Dynamics 238:2211–2222, 2009. © 2009 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here