z-logo
Premium
Genetic inducible fate mapping in mouse: Establishing genetic lineages and defining genetic neuroanatomy in the nervous system
Author(s) -
Joyner Alexandra L.,
Zervas Mark
Publication year - 2006
Publication title -
developmental dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.634
H-Index - 141
eISSN - 1097-0177
pISSN - 1058-8388
DOI - 10.1002/dvdy.20884
Subject(s) - fate mapping , biology , cell fate determination , embryonic stem cell , developmental biology , hindbrain , organogenesis , recombinase , neuroscience , genetics , embryo , gene , evolutionary biology , transcription factor , recombination
A fascinating aspect of developmental biology is how organs are assembled in three dimensions over time. Fundamental to understanding organogenesis is the ability to determine when and where specific cell types are generated, the lineage of each cell, and how cells move to reside in their final position. Numerous methods have been developed to mark and follow the fate of cells in various model organisms used by developmental biologists, but most are not readily applicable to mouse embryos in utero because they involve physical marking of cells through injection of tracers. The advent of sophisticated transgenic and gene targeting techniques, combined with the use of site‐specific recombinases, has revolutionized fate mapping studies in mouse. Furthermore, using genetic fate mapping to mark cells has opened up the possibility of addressing fundamental questions that cannot be studied with traditional methods of fate mapping in other organisms. Specifically, genetic fate mapping allows both the relationship between embryonic gene expression and cell fate (genetic lineage) to be determined, as well as the link between gene expression domains and anatomy (genetic anatomy) to be established. In this review, we present the ever‐evolving development of genetic fate mapping techniques in mouse, especially the recent advance of Genetic Inducible Fate Mapping. We then review recent studies in the nervous system (focusing on the anterior hindbrain) as well as in the limb and with adult stem cells to highlight fundamental developmental processes that can be discovered using genetic fate mapping approaches. We end with a look toward the future at a powerful new approach that combines genetic fate mapping with cellular phenotyping alleles to study cell morphology, physiology, and function using examples from the nervous system. Developmental Dynamics 235:2376–2385, 2006. © 2006 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here