z-logo
Premium
Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb
Author(s) -
Thummel Ryan,
Bai Shan,
Sarras Michael P.,
Song Peizhen,
McDermott Jeffrey,
Brewer Jeffrey,
Perry Martin,
Zhang Xiaoming,
Hyde David R.,
Godwin Alan R.
Publication year - 2006
Publication title -
developmental dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.634
H-Index - 141
eISSN - 1097-0177
pISSN - 1058-8388
DOI - 10.1002/dvdy.20630
Subject(s) - morpholino , zebrafish , biology , regeneration (biology) , electroporation , microbiology and biotechnology , model organism , gene , gene knockout , genetic screen , fish fin , genetics , phenotype , fish <actinopterygii> , fishery
Increased interest in using zebrafish as a model organism has led to a resurgence of fin regeneration studies. This has allowed for the identification of a large number of gene families, including signaling molecules and transcription factors, which are expressed during regeneration. However, in cases where no specific inhibitor is available for the gene product of interest, determination of a functional role for these genes has been difficult. Here we demonstrate that in vivo electroporation of morpholino oligonucleotides is a feasible approach for protein knock‐down during fin regeneration. Morpholino oligonucleotides against fgfr1 and msxb were utilized and knock‐down of both proteins resulted in reduced fin outgrowth. Importantly, Fgfr1 knock‐down phenocopied outgrowth inhibition obtained with an Fgfr1 inhibitor. Furthermore, this method provided direct evidence for a functional role for msxb in caudal fin regeneration. Finally, knock‐down of Fgfr1, but not Msxb, affected the blastemal expression of msxc , suggesting this technique can be used to determine epistasis in genetic pathways affecting regeneration. Thus, this convenient reverse genetic approach allows researchers to quickly (1) assess the function of genes known to be expressed during fin regeneration, (2) screen genes for functional relevance during fin regeneration, and (3) assign genes to the molecular pathways underlying fin regeneration. Developmental Dynamics 235:336–346, 2006. © 2005 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here