z-logo
Premium
The fate of human malignant melanoma cells transplanted into zebrafish embryos: Assessment of migration and cell division in the absence of tumor formation
Author(s) -
Lee Lisa M.J.,
Seftor Elisabeth A.,
Bonde Gregory,
Cornell Robert A.,
Hendrix Mary J.C.
Publication year - 2005
Publication title -
developmental dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.634
H-Index - 141
eISSN - 1097-0177
pISSN - 1058-8388
DOI - 10.1002/dvdy.20471
Subject(s) - biology , zebrafish , melanoma , transplantation , embryonic stem cell , microbiology and biotechnology , cancer research , tumor microenvironment , homing (biology) , genetics , gene , tumor cells , medicine , ecology , surgery
Certain aggressive melanoma cell lines exhibit a dedifferentiated phenotype, expressing genes that are characteristic of various cell types including endothelial, neural, and stem cells. Moreover, we have shown that aggressive melanoma cells can participate in neovascularization in vivo and vasculogenic mimicry in vitro, demonstrating that these cells respond to microenvironmental cues and manifest developmental plasticity. To explore this plasticity further, we transplanted human metastatic melanoma cells into zebrafish blastula‐stage embryos and monitored their behavior post‐transplantation. The data show that human metastatic melanoma cells placed in the zebrafish embryo survive, exhibit motility, and divide. The melanoma cells do not form tumors nor integrate into host organs, but instead become scattered throughout the embryo in interstitial spaces, reflecting the dedifferentiated state of the cancer cells. In contrast to the fate of melanoma cells, human melanocytes transplanted into zebrafish embryos most frequently become distributed to their normal microenvironment of the skin, revealing that the zebrafish embryo contains possible homing cues that can be interpreted by normal human cells. Finally, we show that within the zebrafish embryo, metastatic melanoma cells retain their dedifferentiated phenotype. These results demonstrate the utility of the zebrafish embryonic model for the study of tumor cell plasticity and suggest that this experimental paradigm can be a powerful one in which to investigate tumor‐microenvironment interactions. Developmental Dynamics 233:1560–1570, 2005. © 2005 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here