Premium
Zebrafish TARP Cacng2 is required for the expression and normal development of AMPA receptors at excitatory synapses
Author(s) -
Roy Birbickram,
Ahmed Kazi T.,
Cunningham Marcus E.,
Ferdous Jannatul,
Mukherjee Rajarshi,
Zheng Wang,
Chen XingZhen,
Ali Declan W.
Publication year - 2016
Publication title -
developmental neurobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.716
H-Index - 129
eISSN - 1932-846X
pISSN - 1932-8451
DOI - 10.1002/dneu.22327
Subject(s) - ampa receptor , mauthner cell , biology , excitatory postsynaptic potential , zebrafish , neurotransmission , gene knockdown , neuroscience , microbiology and biotechnology , silent synapse , glutamate receptor , synaptic plasticity , receptor , inhibitory postsynaptic potential , biochemistry , gene , fishery , fish <actinopterygii>
Fast excitatory synaptic transmission in the CNS is mediated by the neurotransmitter glutamate, binding to and activating AMPA receptors (AMPARs). AMPARs are known to interact with auxiliary proteins that modulate their behavior. One such family of proteins is the transmembrane AMPA receptor‐related proteins, known as TARPs. Little is known about the role of TARPs during development, or about their function in non‐mammalian organisms. Here we report the presence of TARPs, specifically the prototypical TARP, stargazin, in developing zebrafish. We find that zebrafish express two forms of stargazin, Cacng2a and Cacng2b from as early as 12‐h post fertilization (hpf). Knockdown of Cacng2a and Cacng2b via splice‐blocking morpholinos resulted in embryos that exhibited deficits in C‐start escape responses, showing reduced C‐bend angles, smaller tail velocities and aberrant C‐bend turning directions. Injection of the morphants with Cacng2a or 2b mRNA rescued the morphological phenotype and the synaptic deficits. To investigate the effect of reduced Cacng2a and 2b levels on synaptic physiology, we performed whole cell patch clamp recordings of AMPA mEPSCs from zebrafish Mauthner cells. Knockdown of Cacng2a results in reduced AMPA currents and lower mEPSC frequencies, whereas knockdown of Cacng2b displayed no significant change in mEPSC amplitude or frequency. Non‐stationary fluctuation analysis confirmed a reduction in the number of active synaptic receptors in the Cacng2a but not in the Cacng2b morphants. Together, these results suggest that Cacng2a is required for normal trafficking and function of synaptic AMPARs, while Cacng2b is largely non‐functional with respect to the development of AMPA synaptic transmission. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 487–506, 2016